二次函數(shù)的定義:
一般地,如果(a,b,c是常數(shù),a≠0),那么y叫做x的二次函數(shù)。
二次函數(shù)的圖像:
是一條關(guān)于對稱的曲線,這條曲線叫拋物線。
拋物線的主要特征:①有開口方向,a表示開口方向;a>0時,拋物線開口向上;a<0時,拋物線開口向下;
、谟袑ΨQ軸;
、塾许旤c;
、躢表示拋物線與y軸的交點坐標(biāo):(0,c)。
性質(zhì):二次函數(shù)y=ax2+bx+c,
、佼(dāng)a>0時,函數(shù)f(x)的圖象開口向上,在(-∞,)上是減函數(shù),在[
,+∞)上是增函數(shù);
、诋(dāng)a<0時,函數(shù)f(x)的圖象開口向下,在(-∞,)上是增函數(shù),在[
,+∞)是減函數(shù)。
二次函數(shù)(a,b,c是常數(shù),a≠0)的圖像:
圖像 | 函數(shù)的性質(zhì) | ||
a>0 | 定義域 | x∈R(個別題目有限制的,由解析式確定) | |
| 值域 | a>0 | a<0 |
| |||
奇偶性 | b=0時為偶函數(shù),b≠0時為非奇非偶函數(shù) | ||
a<0 | 單調(diào)性 | a>0 | a<0 |
圖像特點 |
二次函數(shù)的解析式:
。1)一般式:(a,b,c是常數(shù),a≠0);
。2)頂點式:若二次函數(shù)的頂點坐標(biāo)為(h,k),則其解析式為;
。3)雙根式:若相應(yīng)一元二次方程的兩個根為 ,則其解析式為
。
二次函數(shù)在閉區(qū)間上的最值的求法:
(1)二次函數(shù) 在區(qū)間[p,g]上的最值問題
一般情況下,需要分三種情況討論解決.
當(dāng)a>0時,f(x)在區(qū)間[p,g]上的最大值為M,最小值為m,令.
特別提醒:在區(qū)間內(nèi)同時討論最大值和最小值需要分四種情況討論.
(2)二次函數(shù)在區(qū)間[m.n]上的最值問題一般地,有以下結(jié)論:
特別提醒:max{1,2}=2,即取集合{1,2}中最大的元素。
二次函數(shù)的應(yīng)用:
。1)應(yīng)用二次函數(shù)才解決實際問題的一般思路:
理解題意;建立數(shù)學(xué)模型;解決題目提出的問題。
(2)應(yīng)用二次函數(shù)求實際問題中的最值:
即解二次函數(shù)最值應(yīng)用題,設(shè)法把關(guān)于最值的實際問題轉(zhuǎn)化為二次函數(shù)的最值問題,然后按求二次函數(shù)最值的方法求解。求最值時,要注意求得答案要符合實際問題。